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A London approximation utilizing atomic valence state ionization potentials 
and static polarizabilities yields C6 results in good agreement with accurate 
values for a number of systems. Generally there is considerable improve- 
ment over the results obtained using the London approximation in conjunc- 
tion with molecular parameters and reasons for this are discussed. 
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1. Introduction 

One method of calculating the dispersion part of the interaction between two 
large molecules is to consider the total result as a sum of interactions over the 
constituent parts of the molecules in question [1]. The division of a molecule 
into subunits can be performed in a variety of ways. For example, it is possible, 
and computationally convenient, to consider the total interaction as a sum of 
a tom-a tom interactions [1, 2], and two such methods have recently appeared in 
the literature. Huiszoon and Mulder [3] have determined C, N and H a tom-  
atom potential parameters from a b  i n i t i o  dispersion energies for different 
azabenzene dimers using a fitting procedure. Miller [4, 5], on the other hand, 
fits experimental molecular static polarizabilities to an empirical function 
composed of a series of terms related to atom-like polarizabilities, and employs 
these parameters in the calculation of the induction and dispersion parts of the 
intermolecular interaction energy. Furthermore,  Miller and Savchik [6] have 
shown that the molecular static polarizabilities of a wide variety of molecules 
calculated from the atom-like polarizability parameters using the functional 
form given in Sect. 3, are in excellent agreement with experiment. However,  
comparable comparisons with accurate data on induction and dispersion ener- 
gies are considerably more difficult to obtain. 

The long-range dispersion energy, 

Edisp = -- C6 a - 6  - C s R  -8  - C10 R - l ~  " ~ " (l)  
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is characterized by the intermolecular separation, R, and the dispersion coeffi- 
cients, C6, Cs, C10 . . . . .  which can in principle be determined from experimen- 
tal data. The C6 coefficient is the dominant term in the series and is accurately 
known for a number of molecular systems. Therefore, it can provide a 
reasonable test for assessing the adequacy of a theoretical procedure for 
describing intermolecular dispersion interactions. 

In the present work we consider the use of Miller's atomic static polarizabilities 
in the calculation of the C6 coefficients of several small molecules for which 
accurate values are known, and find that very reasonable values are obtained. 
However, the fact that the atomic parameters used by Miller yield excellent 
static molecular polarizabilities for an extensive set of molecules is no guaran- 
tee that the resulting C6 values will be accurate as discussed in Sect. 2. 
Generally, use of the London approximation [7] with molecular values pro- 
duces (76 coefficients considerably below accurately known values, although 
Miller's sum of atomic terms using a London-type formula provides good 
results. The reasons behind this apparent anomaly will be considered, and the 
reliability and limitations of Miller's approach to the calculation of inter- 
molecular dispersion interactions will be discussed. 

2. Approximate Formulae tor C6(A-B) 

The interpretation of approximate formulae for C6(A-B) ,  has been given 
previously [8, 9] but we include a brief synopsis. Our notation will be that 
A, B , . . .  refer to the interacting molecules and i, j , . . .  to the interacting sub- 
units of the molecules, which in Miller's formalism are atoms. First, we 
consider values obtained using the molecular properties of the systems involved 
and express the frequency-dependent polarizability as 

o~(~) = F/(~ ~ -  ~ )  (2) 

where {F, o5} are molecular parameters and will be determined shortly. Then, 
since C6(A-B)  is defined as [10] 

C6(A-  B) =--3 aA(iw)aB(io)) do) (3) 
3T 

we obtain using Eqs. (2) and (3), 

3 i~AFls 
C6(A-B)  = 2 (joA(~B(0~A -}- o~B) ' (4) 

where all quantities are in atomic units [11]. 

Different choices of the pair {F, o5} yield different results. The molecular 
London approximation is obtained if the choices o5 = I and/~ = I2a(0), where I 
is the molecular ionization potential and a(0) the molecular static polarizabil- 
ity, are made, i.e. 

C~'(A- B)mo, = 30zA(o)o~B(o)IAIB/(IA + IB). (5) 
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As noted above [9], when this approximation is applied to various small 
molecular systems it leads to values for C6 that are generally much lower than 
the accurate values. It has been pointed out previously [12] that values 
obtained using the molecular London approximation provide good but not 
rigorous lower bounds to the true values, a counterexample being provided by 
the (76 value for the H2-H2 interaction. The Slater-Kirkwood approximation 
[13], which arises from the choices /~= N, the number of electrons in the 
molecule, and o5 = (N/c~(O))�89 i.e. 

C~K(A _ g)mo 1 = 30LA(0)0/B(0)[(0LA(0)/NA)�89 _~_ (0~B(0)/NB)~] 1 (6) 

yield C6 values that are strict upper bounds to the accurate values [12] 
provided the experimental static polarizabilities are taken to be exact. It can 
easily be seen that the two methods lead to identical static polarizability results, 
recovering the experimental value. However,  very different C6 values are 
obtained, thus confirming the fact that good static polarizability values do not 
necessarily guarantee comparable C6 results. 

If C6 is to be written as a sum of constituent contributions, instead of Eq. (2) 
we express a(w) as 

= 2 2) (7) 
i 

where the {G, w~} are subunit parameters to be determined. Then from Eqs. (3) 
and (7) we have 

rAY? 
C 6 ( A - B )  = 3 ,cA2 jeB2 (0)n_~_ 0)B)(DA60B (8) 

and once again different choices of {F~, wi} yield different results. Recently it 
has been shown how the {F~, o)~} can be thought of in a point charge model 
context where G is a point charge, with ~ F~ = N, and (o~ its frequency of 
oscillation [14]. In the Miller formalism the pair {F~, ~}  are atomic parameters,  
and are described below. 

3. Miller's Parameters and the London  Formula 

The functional form that Miller uses for the molecular static polarizability is [6] 

o~ (0) = ~ ~i (9) 

where ~'i is a parameter  for the ith atom in its particular valence state and, as 
before, N is the number of electrons in the molecule. Then the atomic static 
polarizability of the ith atom is given by 

4 
= (10) 

with N~ the number of electrons for the ith atom. 
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Miller [4] considers the dispersion part of the intermolecular interaction energy 
as a sum over a tom-a tom interactions, i.e. 

Edisp~--- -- ~ ~,, C 6 ( i - j ) / r i  6 ( 1 1 )  
ieA jeB 

where rij is the interatomic distance, and i and j are summed over the atoms of 
molecules A and B, respectively. In addition he incorporates the van der Waals 
radii of the atoms into the expression and uses a reduced distance instead of r~ r 
This ensures that the systems do not get too close together. Here,  however, we 
deal with the unreduced distance, in which case the corresponding expression 
for the long-range interaction between two small molecular systems is usually 
written as 

Edisp= - ~, ~ C 6 ( i - j ) / R  6 (12) 
leA jeB 

where R is the intermolecular distance between the "centres"  of the two 
molecules. Therefore,  combining Eqs. (1) and (12) it follows that 

C6(A-B)~t= ~ ~ C6(i- j ) ,  (13) 
ieA jEB 

which is the quantity we seek to investigate. 

For many molecules there is an obvious centre, e.g. the carbon atom in 
methane, or a general point could be taken to be the centre of mass. For  large 
systems this is not appropriate as there may be considerable differences in the 
various rij, such that R no longer provides a satisfactory measure, of the 
intermolecular separation. 

Here  we consider C6(A-B)at  as given by Eq. (13) with the London-type form 
used by Miller [4, 5] 

C~( i_ j )  = 3 A B AB ~ai (0)% (O)Ii Ij /(L + IB) (14) 

which corresponds to the choices for {Fi, o~i} of 

Fi = I~ai(O) = 41272/N~, (15a) 

toi = Ii (15b) 

where Ii and oti(0) are the ionization potential and static polarizability (see Eq. 
(10)), respectively, of the ith atom in a given valence state. 

4. Results [or C 6 ( A - A )  1 

In order to clarify the relationship between the molecular and atomic London 
approximations in the calculation of dispersion interactions, we consider the 
interactions between various like species for which the accurate results of 
Meath et al. [16, 17] are available. The molecular London results can be 

1 Calculations can also be carried out for dispersion coefficients between unlike systems, i.e., 
C 6 ( A - B ) ,  using equations of Sect. 3. 
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Table 1. Molecular Parameters 

Ionization Static Polarizability 
Molecule PotentiaP a(0) b a(0), Eq. (9) d,(0), Eq. (18) 

H 2 0.5668 5.43 5.32 5.32 
H20 0-4634 9.64 9.93 10.94 
NH 3 0.3730 14.56 15.25 15.93 
CH 4 0.4774 17.27 17.55 18.18 

Ref. [18]. 
b Refs. [16, 17]. 
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obtained from Eq. (5), which simplifies to 
L _ _ 3  A 2 A C 6 ( A - A ) m o , - ~ c ~  (0) I . (16) 

T a b l e  1 con ta ins  the  m o l e c u l a r  p a r a m e t e r s  r e q u i r e d  for  the  eva lua t i on  of Eq.  
(16). M o l e c u l a r  s ta t ic  po la r i zab i l i t i e s  o b t a i n e d  f rom Eqs.  (9) and  (18) a re  also 
inc luded  for  compar i son ,  vide infra. T h e  a p p r o p r i a t e  a tomic  p a r a m e t e r s  a re  
given in T a b l e  2. In  T a b l e  3 we c o m p a r e  the  a tomic  L o n d o n  va lues  o b t a i n e d  
f rom Eqs.  (13) and  (14) and  the  m o l e c u l a r  L o n d o n  va lues  o b t a i n e d  f rom Eq.  
(16) wi th  the  accura te  resul ts  of M e a t h  et  al. [16, 17]. In  add i t ion ,  m o l e c u l a r  
S l a t e r - K i r k w o o d  va lues  as given by  Eq.  (6) a re  r e p o r t e d .  S o m e t i m e s  N A is 
r e p l a c e d  by  N vA, the  n u m b e r  of va lence  e lec t rons  in mo lecu l e  A ,  bu t  he re  we 

use Eq.  (6). F o r  all the  mo lecu le s  excep t  H2, the  Mi l l e r  m e t h o d  is best ,  w he re a s  
for  H2 the  m o l e c u l a r  L o n d o n  va lue  is c losest  to  the  accu ra t e  one .  I t  is 
in t e res t ing  to no te  tha t  an ave rage  of the  m o l e c u l a r  L o n d o n  and  S l a t e r -  
K i r k w o o d  va lues  y ie lds  a very  r e a s o n a b l e  a p p r o x i m a t e  resul t  (see Ref.  [9]). 

Le t  us now cons ide r  why the  va lues  o b t a i n e d  f rom an a tomic  sum lie a b o v e  the  
m o l e c u l a r  L o n d o n  values .  R e p l a c i n g  I A of Eq.  (14) wi th  A /min, the  smal les t  
va lence  s ta te  ion iza t ion  po ten t i a l  (VSIP)  for  a given molecu le ,  and  combin ing  
Eqs.  (13) and  (14) yie lds ,  for  the  a tomic  L o n d o n  case 

L 3 - A  2 A C6(A-A)min=~a (0) Imin (17) 

Table 2. Atomic Parameters 

Atom Valence State Ionization a VSIP b ~i(0) c 

H s 0.5000 2.6615 
C tetetete --~ tetete 0.5355 7.5333 
N tJtetete -+ tetetete 0.5259 7.9410 
O teateatete --~ te2tetete 0.6762 5.6151 

ate = tetrahedral ("sp 3'') hybrid orbitals. 
b Ref. [15], except H [4]. 
~ These values are obtained from T, values of Ref. [6] using Eq. 

(10). 
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Table 3, Comparison of Dipole-Dipole Dispersion Coefficients 

a C 6 ( A -  A ) a  t L ~ SK d Molecule C6(A_ A)expt L b C 6 ( A -  A)mol C 6 ( A -  A)mol 

H 2 12.1 10.6 12.5 13.4 
H20  45.4 52.4 32.3 71.0 
NH 3 89.0 97.5 58.3 131.8 
CH 4 129.6 127.5 106.8 170.2 

a Accurate values taken from Refs. [16, 17]. 
b Atomic London values; Eqs. (13) and (14). 
~Molecular London values, Eq. (16) using a(0) 's from Refs. [16, 17]. 
d Slater-Kirkwood; Eq. (6) using c~(0)'s as footnote c. 

where 

 a(o) = E  A(0) (18) 
i 

is just the sum of the atomic static polarizabilities given by Eq. (10). From Eqs. 
(9), (10) and (18), it can be shown that 

c / A ( 0 )  ~ ~ A ( 0 ) ,  ( 1 9 )  

which is a rigorous result that holds for the functional forms used in Eqs. (9) and 
(10 )  2. Combining this result with the observation that /mAin > I A, which holds for 
a very large number of molecules 3, yields 

C ~ ( A -  A)min > C ~ ( A -  a)mo,. (20) 

Since CJg(A • represents a lower bound to C~(A-A)a~ it clearly follows 
that 

C~-(A- A ) a  t > C L ( A -  A)mo, .  (21) 

From the above arguments it also follows that 

C } ( A -  A)av > C ~ ( A -  A)mol , (22) 

since lay> A IA4 Imin > . Thus, it is also expected that a C}(A-A)mol calculated 
by replacing I A with I ,  A in the molecular London approximation, Eq. (16), will 
be in better agreement with the accurately determined value. However, it 
should be noted that la A is not likely to be more than 0.1-0.2 a.u. above I a for 

2 Note that aA(0) in Eq. (19) is an approximation to the molecular static polarizability 
calculated using Eq. (9). Since this number can sometimes be less than the experimental value [6], 
it does not always hold that ~A(0)~> aA(0)expt, although deviation from experiment is generally 
quite small. 
3 Compare the VSIP data in Table I of [4] and Table 4 of [15] with the experimental molecular 
ionization potentials given in [18]. 
4 A number of choices are possible for IAv . For example, I2v can be written as IAv = 
(MA) -1 }jiM___1 I A, where M A is the number of atoms and I A the VSIP, or as the weighted average 
A _  tNA)-I VMA NAIA, where N A= MA Iav -- ~ &i = 1 
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most molecules so that the resulting C ~ ( A - A )  value using Ia~ should not get 
too large. 

It is also of interest to consider the sensitivity of the C6(A-A)  coefficients to 
the parameters used in the calculations. C6(A-A)  values, and hence dispersion 
interaction energies, will be more sensitive to errors in the static polarizabilities 
than to errors in the ionization potentials since the square of the static 
polarizability is used whilst the ionization potential appears only linearly in 
expressions such as Eqs. (16) and (17). The particular functional form used by 
Miller and Savchik [6] for the molecular static polarizability ensures that Eq. 
(19) holds, and this means that the C~(A-A)a  t value is likely to be higher than 
the molecular London result due to both the polarizability and ionization 
potential terms. Furthermore, it should be noted that for any London approxi- 
mation involving a sum over molecular subunits (e.g. bonds), improvements 
over the molecular London value must be obtained almost entirely from the 
subunit ionization potentials, since in general o~ (0 ) -~  ~i(0), where the sum- 
mation is over all the molecular subunits. However, many "bond"  approaches 
[19-21] do not employ a London-type approximation, and thus the above 
arguments may not strictly apply in these cases. 

Thus, to sum up, the atomic London approximation for C6 ( A- A)  yields better 
results than the molecular London approximation due to the functional form of 
the static polarizability [6] and whenever the minimum and/or average atomic 
VSIPs are greater than the molecular value. For the average VSIP this is likely 
to be the case for a large number of systems, regardless of what particular set 
of VSIP's are chosen (compare [4] and [15]). However, it is important to note 
that comparisons based on C6 coefficients only apply to small or medium sized 
molecules where the intermolecular separation is accurately approximated by 
R; and, since the C6 coefficients represent spherically averaged intermolecular 
interactions, accurate atomic London (?6 values for smaller systems do not 
necessarily imply that dispersion interactions between large, highly asymmetric 
molecules will be well described by a sum of London-type a tom-atom terms. 

The fact that the total molecular values of this paper obtained as a sum of 
a tom-atom terms are good does not ensure the accuracy of the individual 
a tom-atom contributions which become crucial when larger systems are consi- 
dered. In such cases each a tom-atom term must be calculated accurately and 
not just the total value due to the fact that the dispersion energy is given by an 
equation of the form shown in Eq. (11) and not Eq. (12). Thus additional tests 
are needed before the accuracy of the atomic London approximation can be 
considered entirely satisfactory. Nevertheless, we have shown that for small 
and medium size systems it may provide a satisfactory and computationally 
simple method for calculating dispersion energies. 
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